SOLIDS

@aniit

Frenkel defect:

- Ions(cations) missing from their lattice site occupy interstitial sites
- No effect on density
- There is a large difference in the size of the ions (cation or anions).

Interstitial defect:

- · When some of the atoms occupy interstitial sites.
- · It increases the density of a substance.

Vacancy defect:

- When some of the lattice sites are vacant.
- Decreases the density of the substances
- It develops on heating.

Non-ionic solids

Ionic solids

Schottky defect:

- Cations and anions are missing equally
- Density decreases
- · It is shown by ionic substances in which ions (cations or anion) having almost similar sizes.

Metal deficiency defects: It is due to missing of a cation from its lattice site and the presence of a cation having higher charge in the adjacent lattice site e.g., FeO

Metal excess defects

Due to anionic vacancy

When holes created by

anions are occupied by

electrons, these sites are

called F-centres and are

responsible for colour in the crystal. e.g., NaCl

(F-centres)

Stoichiometric defects: This defects do not disturb the stoichiometry of the solid

- · They are also called intrinsic defects
- It increases with the increase in temperature (thermodynamic defects)

Impurity defects: Foreign

atoms are present at the lattice site in place of host atoms or at vacant interstitial sites.

Non-Stoichiometric defects:

Due to presence of extra cations at interstitial sites e.g.,

 $ZnO \xrightarrow{\Delta} Zn^{2+} + \frac{1}{2}O_2 + 2e^{-}$

Zn²⁺ ions and the electrons occupy interstitial sites.

The ratio of (+)ve and (-)ve ions present in the compound differs from that required by ideal formula.

Line defects: Deviation in entire rows of lattice point.

Point defects: Deviation around a point or an atom in a solid

Unit cell: Smallest repeating pattern

Structure of solids

Close packed structure

Type of solids

Type of solid Intermolecular forces Properties

Dispersion forces/dipole

Ion-Ion forces

dipole/H-bonds

Covalent bonds

Metallic bonds

Imperfection in solids

Crystalline solids:

- Definite characteristics
- Geometrical shape
- Long range order
- Anisotropic in nature e.g., NaCl, KNO₃, LiF, etc.

Molecular

Covalent

Metallic

SOLIDS Amorphous solids:

Brittle, hard, high melting point,

both fused and aqueous solutions

Soft, low melting point, Insulators

Hard, very high melting point e.g

Variable hardness and melting

Conducting e.g Na, Zn, Cu, Fe

point, malleable and ductile.

e.g H2O, Br2, CO2, CH4

C-diamond, SiO2

· Irregular in shape

e.g, NaCl

- Short range order
- Isotropic in nature e.g., plastic, glass, etc.

Doping: The conductivity of an intrinsic semiconductor increases by adding an impurity which is electron rich or electron deficient as compared to Si or Ge. This process is called doping.

Properties of solids

Radius ratio rules:

- The coordination number is a function of the sizes of the ions.
- Ionic radius ratios of cation and anion is very important in the determination of the crystal structures of an ionic substances.

Radius ratio = Radius of cation (r_+) /Radius of anion (r_-)

Radius ration	C.N.	shape	Example
0.155-0.255	3	Planar triangle	B_2O_3
0.255-0.414	4	Tetrahedral	ZnS
0.414-0.732	6	Octahedral	NaCl
0.732-1.0	8	Body-centred cubic	CsCl

Unit cell dimensions:

$$d = \frac{Z \times M}{a^3 \times N_A}$$

Z = no. of atoms per unit cell

d = density of solid

a =edge length M = molar mass

 $N_A = Avogadro's number$

Body-centred: It contains one constituent particle at its body centre. besides the ones that are at its corners.

Face centred: One constituent particles is present

each face.

at the centre of

End-centred: One constituent particles is present at the centre of any two opposite faces.

Primitive unit cell:

Constituent particles (atom. molecules or ions) are present on the corner positions only

Centred unit cell: Constituent particles are present on the corner position along with some other positions.

Number of atoms per unit cell:

Primitive cubic $\Rightarrow 8 \times \frac{1}{9} = 1$ Body-centred cubic

 $\Rightarrow 8 \times \frac{1}{8} + 1 = 2$

Face-centred cubic

 $\Rightarrow 8 \times \frac{1}{8} + 6 \times \frac{1}{2} = 4$

Crystal system	Axial distances		
e.g.	or edge lengths	Axial angles	Example
Cubic	a = b = c	$\alpha = \beta = \gamma = 90^{\circ}$	Zinc blend, KCl, NaCl, Cu
Tetragonal	$a = b \neq c$	$\alpha = \beta = \gamma = 90^{\circ}$	Sn (white tin), TiO ₂ , CaSO ₄ , SnO ₂
Orthorhombic	a≠b≠c	$\alpha = \beta = \gamma = 90^{\circ}$	Rhombic sulphur, KNO ₃ , CaSO ₄
Monoclinic	a≠b≠c	$\alpha = \gamma = 90^{\circ}; \beta \neq 90^{\circ}$	Monoclinic sulphur, PbCrO ₄ , Na ₂ SO ₄ .10H ₂ O
Hexagonal	$a = b \neq c$	$\alpha = \gamma = 90^{\circ}; \beta = 120^{\circ}$	Graphite, CdS, ZnO
Rhombohedral or Trigonal	a = b = c	$\alpha = \gamma = \beta \neq 90^{\circ}$	CaCO ₃ (calcite), HgS (cinnabar)
Triclinic	a≠b≠c	α≠γ≠β≠90°	CuSO ₄ .5H ₂ O, H ₃ BO ₃ , K ₂ Cr ₂ O ₇

Close packing in one dimension: Lattice point

arranged in a row C.N. = 2

Close packing in two dimension:

- (a) Square close packaging: (A-A-A)...type C.N. = 4
- (b) Hexagonal close packing: (A - B - A - B)type) C.N. = 6

Close packing in three dimension:

- (a) Primitive cubic unit cell: AAA ... type arrangement, CN = 6, P.F. = 52.4%
- (b) $hcp = ABAB \dots type$ pattern, C.N. = 12PF = 74%
- (c) ccp or fcc: ABCABC ... type pattern, CN = 12PF = 74%

Magnetic Properties:

- Paramagnetic substances are weakly attracted by a magnetic field. e.g., O₂, Cu²⁺, Cr³⁺.
- Diamagnetic substances are weakly repelled by a magnetic field. e.g. H₂O, C₆H₆ and NaCl.
- Ferromagnetic substances are those which show permanent magnetism even in the absence of magnetic field e.g., Fe, Ni, Co, CrO2 etc.
- Anti-ferromagnetic substances are those which are expected to possess paramagnetism or ferromagnetism but actually have zero net magnetic magnetic moment due to equal number of domains in opposite directions, e.g., MnO.
- · Ferrimagnetic substances are those expected to have large magnetism but actually have small net magnetic moment
- ① ① ① ① ① ① Ferromagnetic ① ① ① ① ① ① Antiferromagnetic ① ① ① ① ① ① Ferrimagnetic

Electrical Properties

- · Conductors: Valence band is partially filled or it overlaps with a higher energy unoccupied conduction band
- · Semiconductors: Small energy gap between valence and conduction band
- · Insulators: Large energy gap between valence and conduction band

p-type semiconductor (by doping electron deficient impurities) **n-type semiconductor** (by doping electron rich impurities)